PFAS and Liver Disease:

Translating the Knowledge into Humans and Preventive Practices

Lida Chatzi, MD, PhD Keck School of Medicine University of Southern California

Keck School of Medicine of USC Department of Population and Public Health Sciences

Non-Alcoholic Fatty Liver Disease (NAFLD): An Epidemic

NAFLD prevalence in the U.S

"Metabolism Disrupting Chemical" Hypothesis

Per- and polyfluoroalkyl substances (PFAS): The new forever chemicals

What are PFAS?

How are we exposed?

- > 7,000 chemicals
- PFAS have been widely used in industrial applications and consumer products
- Resistant to degradation
- Detected in blood of almost everyone in the U.S.

PFAS Water Contamination in the United States July 8, 2022 (EWG)

SUMMARY: PFAS AND LIVER INJURY

HEPATOLOGY

ORIGINAL

Prenatal Exposure to Perfluoroalkyl Substances Associated with Increased Susceptibility to Liver Injury in Children

Nikos Stratakis, David V Conti, Ran Jin, Katerina Margetaki, Damaskini Valvi, Alexandros P. Siskos, Léa Maitre, Erika Garcia, Nerea Varo, Yinqi Zhao, Theano Roumeliotaki, Marina Vafeiadi, Jose Urquiza, Silvia Fernández-Barrés, Barbara Heude, Xavier Basagana, Maribel Casas, Serena Fossati, Regina Gražulevičienė, Sandra Andrušaitytė, Karan Uppal, Rosemary RC. McEachan, Eleni Papadopoulou, Oliver Robinson, Line Småstuen Haug, John Wright, Miriam B. Vos, Hector C. Keun, Martine Vrijheid, Kiros T. Berhane, Rob McConnell, Lidada Chatzi 🕿 ... See fewer authors 🔨

First published: 01 August 2020 | https://doi.org/10.1002/hep.31483

RESEARCH ARTICLE | ARTICLES IN PRESS, 100550

Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort

Jesse A. Goodrich <u>A</u> ⊇ • Douglas Walker • Xiangping Lin • Hongxu Wang • Tiffany Lim • Rob McConnell • David V. Conti • Lida Chatzi [#] • Veronica Wendy Setiawan [#] • Show less • Show footnotes

Open Access • Published: August 08, 2022 • DOI: https://doi.org/10.1016/j.jhepr.2022.100550

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envint

Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach

Ran Jin^a, Rob McConnell^a, Cioffi Catherine^b, Shujing Xu^a, Douglas I. Walker^{c,d,1}, Nikos Stratakis^a, Dean P. Jones^c, Gary W. Miller^{d,2}, Cheng Peng^a, David V. Conti^a, Miriam B. Vos^{b,e,3}, Leda Chatzi^{a,+,3}

Vol. 130, No. 4 | Review

Exposure to per- and Polyfluoroalkyl Substances and Markers of Liver Injury: A Systematic Review and Meta-Analysis

is companion of

Invited Perspective: PFAS and Liver Disease: Bringing All the Evidence Together

Elizabeth Costello 🖂 Sarah Rock, Nikos Stratakis, Sandrah P. Eckel, Douglas I. Walker, Damaskini Valvi, Dora Cserbik, Todd Jenkins, Stavra A. Xanthakos, Rohit Kohli, Stephanie Sisley, Vasilis Vasiliou, Michele A. La Merrill, Hugo Rosen, David V. Conti, Rob McConnell, and Leda Chatzi

Emerging Evidence on PFAS and Fatty Liver Disease

Existing Evidence

<u>Animal studies^{1,2}:</u>

- Liver enlargement
- Hepatic steatosis

General US adults^{3,4}:

 Increased levels of alanine aminotransferase (ALT), a surrogate marker for NAFLD screening

Preliminary Results from Animal Models

PFOS administration increases lipid content in mouse liver (A) and impedes the effect of calorie restriction and increases hepatic triglyceride content (B) PFOS Vehicle Β 4.0 AL, ad libitum; CR, calorie restriction; VEH, vehicle

> ¹Das KP et al., 2017; ²Wu X et al., 2018; ³Lin CY et al., 2010; ⁴Gleason JA et al., 2015

Exposure to PFAS and Liver Injury: a systematic review and meta-analysis

Comprehensive Evidence

Costello & Rock et al, EHP 2022

- Systematically review all available <u>human</u> and <u>rodent</u> studies examining exposure to PFAS and
 - Serum ALT, AST, GGT
 - Liver disease:
 - NAFLD/NASH
 - Steatosis
 - Liver weight (rodents)
 - Histopathological outcomes (rodents)
- Meta-analyzed using a weighted z-score approach

Search Results

Costello & Rock et al, EHP 2022

Weighted Z-score: 6.20 (p < 0.001)

Reference	Population	Age	Sex	Ν	Exposure	Blood Conc.	Z-Score
Sakr, 07'	GHS	<u>></u> 18	Overall	1024	PFOA	0.428 ppm ^b	•
Olsen, 07'	Plant Employees	21-67	Male	506	PFOA	2210 ng/mL ^b	•
Emmett, 06'	Little Hocking, OH	2-90	Overall	371	PFOA	354 ng/mL ^a	•
Gallo, 12'	C8HP	<u>></u> 18	Overall	46452	PFOA	28.0 ng/mL ^a	▲
Darrow, 16'	C8HP	> 20	Male	12364	PFOA	17.1 ng/mL ^a	▲
Darrow, 16'	C8HP	> 20	Female	15683	PFOA	16.0 ng/mL ^a	▲
Nian, 19'	I C8HP	22-95	Overall	1605	PFOA	6.19 ng/mL ^a	▲
Lin, 10'	NHANES 99' – 03'	<u>></u> 20	Male	1063	PFOA	5.05 ng/mL ^b	•
Lin, 10'	NHANES 99' – 03'	<u>></u> 20	Female	1134	PFOA	4.06 ng/mL ^b	•
Gleason, 15'	NHANES 07'- 10'	> <u>1</u> 2	Overall	4333	PFOA	3.5 ng/mL ^c	▲
Jain, 19'	NHANES 11-14'	<u>></u> 20	Overall	1082	PFOA	2.2 ng/mL ^c	•
Jain, 19'	NHANES 11'-14'	<u>></u> 20	Overall	1801	PFOA	2.0 ng/mL ^c	A
Attanasio, 19'	NHANES 13'-16'	12-19	Male	354	PFOA	1.50 ng/mL ^c	•
Attanasio 19'	NHANES 13'-16'	12-19	Female	305	PFOA	1.22 ng/mL ^c	A
Mora 18'	Project Viva	6-11	Male	332	PFOA	4.4 ng/mL ^a	•
Mora 18'	Project Viva	6-11	Female	298	PFOA	4.2 ng/mL ^a	•
Khalil 18'	DCH	8-12	Overall	48	PFOA	0.99 ng/mL ^a	•
							I I I

Strip plot for the Z-scores of the cross-sectional analyses of PFOA on ALT. Sex specific results are presented separately where available. The weighted Z-score calculation was performed for ages 12 and older, using the larger of overlapping cohorts. Cohorts: GHS: General Health Survey; C8HP: C8 Health Project; I C8HP: Isomers of C8 Health Project; NHANES: National Health and Nutrition Examination Survey; DCH: Dayton Children's Hospital. Positive association () negative association: (); no association: (); no association: ().

Costello & Rock et al, EHP 2022

10

RESULTS Rodent Studies: Exposure to PFOA and Liver Weight

			Exposure	•	•	Sample	•					
¹ Reference	Species	Strain (Sex)	Route	Exposure	Duration	Collection			Dose (mg/kg)			
Martin, 2007	Rats	SD (M)	Gavage	PFOA	1D	EOT			•			
Martin, 2007	Rats	SD (M)	Gavage	PFOA	2D	EOT	-		A			
Martin, 2007	Rats	SD (M)	Gavage	PFOA	5D	EOT			A			
Rigden, 2015	Rats	SD (M)	Gavage	PFOA	3D	4D Post		A		A		^
Minata, 2010	Mice	129S4/Svlmj (M)	Gavage	PFOA	4W	EOT	A	A	A			
Nakagawa, 2012	Mice	mPPARα (M)	Gavage	PFOA	6W	EOT						
Nakagawa, 2012	Mice	hPPARα (M)	Gavage	PFOA	6W	EOT						
Nakagawa, 2012	Mice	PPARα-null (M)	Gavage	PFOA	6W	EOT						
Minata, 2010	Mice	PPARα-null (M)	Gavage	PFOA	4W	EOT	A		A			
Das, 2017	Mice	PPARα-null (M)	Gavage	PFOA	7D	EOT		A				
Das, 2017	Mice	SV129 (M)	Gavage	PFOA	7D	EOT		A				
Yahia, 2010	Mice	ICR (Dams)	Gavage	PFOA	GD0-GD17	EOT	-	A				
Yang B 2014	Mice	Kunming (M)	Gavage	PFOA	14D	EOT		A				
Yan, 2014	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	* *		A			
Guo, 2019	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT						
Yan, 2015	Mice	BALB/c (M)	Gavage	PFOA	28D	EOT	A					
Yan, 2015	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 125	28D	EOT	▲ I					
Yan, 2015	Mice	BALB/c (M)	Gavage	PFOA+4-PBA 250	28D	EOT	A					
Blake, 2020	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-11.5	E17.5						
Blake, 2020	Mice	CD-1 (Dams)	Gavage	PFOA	E1.5-11.5	EOT						
Wang G. 2021	Mice	C57BL/6J (M)	Gavage	PFOA	15D	EOT	▲ (A		
Wang G 2021	Mice	C57BL/6J (M)	Gavage	PFOA	30D	FOT	- • •					
LiX 2019	Mice	C57BL/6 (M)	Gavage	PFOA+LED	16W	FOT	▲ I					
LiX 2019	Mice	C57BL/6 (M)	Gavage	PFOA+LED	8W	FOT	▲ (
Li X, 2019	Mice	C57BL/6 (M)	Gavage	PFOA+LFD	2W	FOT	▲ (
Li X, 2019	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	16W	EOT	▲ III					
LiX 2019	Mice	C57BL/6 (M)	Gavage	PFOA+HFD	8W	FOT	▲ (
LiX 2019	Mice	C57BL/6 (M)	Gavage	PEOA+HED	2W	FOT	A					
Tan 2013	Mice	C57BL/6N (M)	Diet	PFOA	3W	FOT	▲ I					
Tan 2013	Mice	C57BL/6N (M)	Diet	PFOA+HFD	3W	FOT	▲ I					
Cui 2019	Mice	C57BL/6.L(M)	Gavage	PFOA	28D	FOT	▲ I					
Cui 2019	Mice	miR-34a-/- C57BL/6 L(M)	Gavage	PEOA	280	FOT	-					
Douwer 2019	Mice	APOE*3 Leiden CETP (M)	Diet	PFOA	20D 6W	FOT	•					
Pouwer 2019	Mice	APOE*3-Leiden CETP (M)	Diet	PFOA	AW	FOT	•			A		
Schlezinger 2020	Mico	hPPARa (M)	Water	PEOA	6W	FOT						
Schlezinger, 2020	Mice	PPARa-pull (M)	Water	PEOA	6W/	FOT						
Schlezinger, 2020	Mice	hPPARa (F)	Water	PEOA	6W	FOT	A					
Schlozinger, 2020	Mico	DDADa.pull (F)	Water	DEOA	GW	FOT	A					
LiD 2019	Mice	Kupping (E)	Propatal	PFOA	GD1-17	DND21						
Quist 2015	Mice	$CD_1(E)$	Propatal	PEOA	GD1-17	PND21	A					
Quist, 2015	Mico	CD 1 (F)	Propatal	DEOA	GD1 17	DNDQ1						
Quist, 2015	WILCE		Fieliatai	FIUA	GDT-TT	FINDST	-					
							ò		20		40	100
									Dose (nnm)			
Butenhoff 2012a	Pate	SD (M)	Diet	PEOA	28	FOT		•	Dose (ppin)			• 1
Butenhoff 2012c	Rate	SD (E)	Diet	PEOA	27	FOT	-	•				•
Butenhoff 2012c	Rate	SD (M)	Diet	PEOA	1	FOT	_	-				A
Butenhoff 2012c	Date	SD (F)	Diet	PEOA	17	FOT	_					
Ogzi 2012b	Mico		Diet	DEOA	280	EOT						•
Qazi, 20130	Mice	C57BL/6 (M)	Diet	DEOA	100	FOT						
Botolho 2015	Mice	C57BL/6 (M)	Diet	PEOA	100	FOT	1					
Son 2008	Mico		Wator	PEOA	210	FOT						
301,2000	MILLE		Valei	FIUR	210	LUI	(A			

Strip plots for PFOA and relative liver weight in animal studies. Blue triangles indicate a significant increase in relative liver weight relative to control. Black dots indicate no significant change in relative liver weight relative to control. Plots are ordered by species and strain. *Abbreviations*: End of treatment (EOT); low fat diet (LFD); high fat diet (HFD); postnatal day (PND); gestational day (GD); embryonic day (E); Sprague Dawley (SD); 4-phenylbutyric acid (4-PBA).

Costello & Rock et al, EHP 2022

	Human	Animal	Conclusions
PFOA FFFFFFFFF	ALT, GGT, AST (Longitudinal and cross- sectional studies)	↑ ALT Steatosis Histopathological alterations	Likely relationship between PFOA and liver injury
PFOS $\xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{F}_{F} \xrightarrow{SO_{3}H}$	↑ ALT (Primarily cross-sectional studies)	↑ ALT Steatosis Histopathological alterations	Likely relationship between PFOS and liver injury
PFNA F	↑ ALT (Cross-sectional studies)	↑ ALT Steatosis Histopathological alterations	PFNA may be related to liver injury
PFHxS	No relationship (Cross-sectional studies)	Steatosis Histopathological alterations (high doses)	PFHxS may be related to liver injury. (The evidence is limited)
Other PFAS	Li	mited evidence, more information is	needed.
PFAS Mixtures	Limited number of st	tudies, but suggests a relationship. N	Nore information is needed.

Prenatal exposure to PFAS and Increased Susceptibility to Liver Injury in Children

Environmental Factor

Your Online Source for NIEHS News

JANUARY 2021

Home

Science Highlights Papers Published Community Impact

2020 Papers of the Year

Previous Article Next Article

National Institute of

All Issues
 Subscribe
 RSS +A -A

Environmental Health Sciences

Bevond the Bench

From the nearly 3,500 publications by NIEHS researchers and grantees in 2020, the institute's leaders selected 27 for special recognition as Papers of the Year.

BY ROBIN ARNETTE

Research funded by grants

PFAS linked with liver injury in children

Exposure to per- and polyfluoroalkyl substances (PFAS) in the womb may increase liver injury risk in children, according to NIEHS-funded researchers. This study is the first to examine the impact of early life exposures to a PFAS mixture on child liver injury. PFAS, a large group of synthetic chemicals found in a variety of consumer products, have been linked to immune dysfunction, altered metabolism, brain development, and certain cancers.

Evaluation of **PFAS mixture**

Awards & Recognition

- Integration of **metabolomics**
- Prospective follow-up design

Stratakis et al, Hepatology 2020

GUIDED HYPOTHESIS

Prenatal PFAS and risk of NAFLD in children

R21ES029681

STUDY DESIGN

Joint effect of prenatal PFAS mixture on risk of pediatric liver injury (OR, 95% CI)

RESULTS

Maternal PFAS mixture (in percentiles)

Liver injury risk: Any liver enzyme serum concentrations >90th percentile

Median maternal PFAS concentration (ng/ml) in HELIX and female NHANES population

Stratakis et al, Hepatology 2020

RESULTS Metabolite features are associated with prenatal PFAS and liver injury

Network Analysis (xMWAS)

Stratakis et al, Hepatology 2020

PFAS and Severity of NAFLD in children: An untargeted metabolomics approach

Children have <u>increased exposure</u> relative to their body size and <u>more progressive</u> form of the disease

<u>Aim 1:</u> To examine associations between blood concentrations of PFAS and NAFLD severity in children, assessed liver histological features under biopsy ("gold standard")

<u>Aim 2:</u> To explore metabolic perturbations in associations with PFAS that could possibly contribute to disease progression in NAFLD children

RESULTS Liver Histological Features Under Biopsy

Variables	N (%)
Grade of Steatosis	
1 (5-33%)	27 (36.5)
2 (34-66%)	13 (17.6)
3 (>66%)	34 (45.9))
Lobular inflammation	
0 (no foci)	24 (32.4)
1 (<2 foci per 200x field)	43 (58.1)
2 (2-4 foci per 200x field)	7 (9.5)
3 (>4 foci per 200x field)	0 (0)
Portal inflammation	
0 (none)	42 (56.8)
1 (mild)	24 (32.4)
2 (moderate to severe)	8 (10.8)
Hepatocellular Ballooning	
0 (none)	44 (59.5)
1 (few balloon cells)	25 (33.8)
2 (many cells/prominent ballooning)	5 (6.76)
Fibrosis stage	
0 (none)	22 (29.7)
1 (Perisinusoidal or periportal)	38 (51.4)
2 (Perisinusoidal and portal/periportal)	8 (10.8)
3 (Bridging)	6 (8.1)
4 (Cirrhosis)	0 (0)

RESULTS Clinical Features of Study Population

CHEAR Project:

- N=74 children
- 7-19 years
- Physician-diagnosed NAFLD

Characteristics

- Highly obese
- Most Hispanics
- Most Male
- Elevated ALT levels (> 25.8 U/L for boys, > 22.1 U/L for girls)

Variables	Mean (SD) or N (%)
Age (years)	14.0 (2.81)
Male, n (%)	52 (70.3)
Hispanics, n (%)	39 (52.7)
BMI percentile	98.4 (2.30)*
Normal weight (n, %)	4 (5.4)
Overweight (n, %)	7 (9.5)
Obesity (n, %)	63 (85.1)
ALT (U/L)	90.0 (75.0)*

RESULTS

RESULTS Metabolic Disturbance Associated With PFAS

- First study examining PFAS blood concentrations in relation to histopathological staging of NAFLD in children
- NAFLD children with higher blood PFHxS concentrations had increased odds of presenting lobular/portal inflammation and more advanced stage of fibrosis
- Blood concentrations of PFAS were associated with metabolic perturbation in numerous amino acids and phospholipids, key metabolic pathways previously found also to be altered in NAFLD/NASH

PFAS and Liver Cancer

JHEP Reports

RESEARCH ARTICLE | ARTICLES IN PRESS, 100550

Exposure to perfluoroalkyl substances and risk of hepatocellular carcinoma in a multiethnic cohort

Jesse A. Goodrich A ⊡ • Douglas Walker • Xiangping Lin • ... David V. Conti • Lida Chatzi [#] • Veronica Wendy Setiawan [#] • Show all authors • Show footnotes

f SHARE 😏 TWEET

Open Access • Published: August 08, 2022 • DOI: https://doi.org/10.1016/j.jhepr.2022.100550

THE HILL

EQUILIBRIUM & SUSTAINABILITY

Scientists link 'forever chemical' exposure to development of liver cancer

BY SHARON UDASIN - 08/08/22 6:00 PM ET

=	Medscape	(
	-	

News > Medscape Medical News

Pervasive 'Forever Chemical' Linked to Liver Cancer

- Multiethnic Cohort (MEC) Study
 - 50 non-viral incident cases of HCC and 50 matched controls
 - Exposures:
 - **Pre-diagnostic** plasma PFAS (PFOS, PFOA, PFHxS, PFDA, PFNA) concentrations
 - Untargeted plasma metabolomics

	HCC (n=50)	Control (n=50)
Age @ blood collection	69.7	69.2
Race/ethnicity		
Afr Amer	6%	6%
Japn Amer	38%	38%
Latino	24%	24%
Native Haw	14%	14%
White	18%	18%
Female	38%	38%
Study area		
СА	36%	36%
н	64%	64%
BMI		
<25	18%	38%
25-<30	36%	46%
30+	46%	16%
T2D	38%	8%
Ever smokers	74%	62%
Alcohol 12+ g/day	22%	16%

RESULTS Associations Between Plasma PFAS Concentrations and HCC Risk

PFAS	μg/L	OR* (95% CI)	p-value
PFOS	>54.9	4.50 (1.20, 16.00)	0.02
PFHxS	>4.28	1.10 (0.56, 2.30)	0.72
PFOA	>8.6	1.20 (0.52, 2.80)	0.67
PFDA	>0.79	0.80 (0.31, 2.00)	0.64
PFNA	>1.47	1.20 (0.49, 3.20)	0.64
PFUnDA	>1.22	2.20 (0.92, 5.50)	0.07
PFAS Mixture		9.9 (1.05, 14.30)	0.04

*High level was based on the 90th percentile in NHANES 1999-2000

OR was adjusted for matching factors

PFAS Mixture effect calculated using quantile g-computation, and represents the odds ratio when increasing all PFAS in the mixture from Low (<90th percentile) to High (>90th percentile).

RESULTS Metabolic Pathways Associated with High PFOS Levels or HCC

RESULTS Metabolites Positively Associated PFOS and HCC Risk

α-Ketoisovaleric acid: branched-chain α-keto acid 7α-Hydroxy-3-oxo-4-cholestenoate: bile acid

- High levels of PFOS in pre-diagnostic plasma samples are associated with increased risk of HCC
- Glucose and cholestanol metabolites were positively
 associated with PFOS exposure and with risk of HCC
- PFOS may increase risk of HCC via effects on glucose metabolism and bile acid biosynthesis

1. Discover Associations

Discover Associations Longitudinal cohort studies

- 1. Discover Associations
- 2. Understand Biology

- 1. Discover Associations
- 2. Understand Biology
- 3. Integrate Multiomics & Computational Toxicology

- 1. Discover Associations
- 2. Understand Biology
- 3. Integrate Multiomics & Computational Toxicology
- 4. Data Science and Bioinformatics

- 1. Discover Associations
- 2. Understand Biology
- 3. Integrate Multiomics & Computational Toxicology
- 4. Data Science and Bioinformatics
- 5. Solution-Oriented Public Health Action

R35 ES035051-Under review

USC Center for Translational Research on Environmental Health and Chronic Diseases

ACKNOWLEDGEMENTS

University of Southern California/CHLA

- Rob McConnell, MD
- David Conti, PhD
- Lary Palinkas, PhD
- Wendy Setiawan, PhD
- Jesse Goodrich, PhD
- Michael Goran, PhD
- Lucy Golden, PhD
- Sarah Rock, MPH
- Rohit Kohli, MD, PhD
- Sandy Eckel, PhD

Funding Sources

R01ES029944; R01ES030364; R01ES030691

- R21 ES028903;
- 5P30ES007048-23; 5P30DK048522-24,
- USC Dean's Pilot Award

USC Center for Liver Disease Research Pilot Award

Emory University

- Douglas Walker, PhD
- Dean Jones, PhD

Columbia University

- Andrea Baccarelli, MD, PhD
 <u>NIEHS</u>
- Sue Fenton, PhD

<u>Mount Sinai</u>

- Damaskini Valvi , MD, PhD
 <u>Harvard</u>
- Philippe Grandjean, PhD
- Emily Oken, MD, PhD UC Davis
- Michele La Merrill, PhD ISGlobal, Barcelona
- Martine Vrijheid, PhD <u>University of Colorado</u>
- Peter Bjornstad, PhD
- Anne Sterling, PhD